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MODIFIED SHALLOW WATER EQUATIONS WHICH ADMIT

THE PROPAGATION OF DISCONTINUOUS WAVES OVER A DRY BED

UDC 519.63V. V. Ostapenko

A method for modeling the propagation of discontinuous waves over a dry bed using the first ap-
proximation of shallow water theory is proposed. The method is based on a modified conservation
law of total momentum that takes into account the concentrated momentum losses due to the for-
mation of local turbulent vortex structures in the fluid surface layer at a discontinuous-wave front.
A quantitative estimate of these losses is obtained by deriving the shallow water equations from the
Navier–Stokes equations with allowance for viscosity, which has a rapidly increasing effect in the
turbulent flow regions described by discontinuous waves. The stability of the discontinuous waves
admitted by the modified system of conservation laws of shallow water theory is examined. As an
example, a comparative analysis is performed of the solutions of the dam-break problem obtained for
the classical and modified shallow water models.

Key words: shallow water equations, discontinuous waves, modified total-momentum conserva-
tion law, dam-break problem.

Introduction. The equations of the first approximation of shallow water theory [1–5] are widely used to
model the propagation of discontinuous waves [6–8] (hydraulic bores [9–11]) generated by total or partial dam breaks
or by the impact of large sea tsunami-type waves [12] on shallow water. As is known, the classical system of the
basic conservation laws of shallow water theory, consisting of the conservation laws for mass and total momentum
[3–5], while correctly describing the parameters of discontinuous waves propagating in a fluid of finite depth [1],
does not admit discontinuous-wave propagation over a dry bed. The exact solutions describing water flow over a
dry bed within the framework of this system are continuous depression waves (a simple example of such a wave
generated by dam break above a horizontal bottom was first constructed in [13]). Accounting for bottom friction,
which is a distributed source term making no contribution to the Hugoniot conditions at a discontinuous wave front,
cannot change this situation [14–17]. At the same time, numerous laboratory experiments have shown that these
continuous solutions considerably overestimate the propagation velocity of the wave leading edge and distorts the
wave profile [18–23]. In experiments, the waves propagating over a dry bed have a significantly steeper front, on
which breaks characteristic of discontinuous waves occur.

Figure 1a gives a photograph of the wave obtained in laboratory modeling of the dam-break problem with a
dry bed in the tailwater. The wave flow is produced by a sudden removal of the flat shield bounding the stationary
fluid in the headwater (a detailed description of the results of the experiment is given in [21, 23]). From the results
of the experiments, it follows that the head of the moving wave had a pulsating and quasistationary profile (Fig. 1b).
The hydraulic jump BC, incoming on the thin water layer AB propagating ahead, gradually absorbs some of its
part. The steepness of the leading edge of the jump BC thus decreases. As a result, the jump is almost completely
degenerated and the free surface profile at the wave head becomes fairly flat. Next, the reverse process occurs: the
free surface profile at the wave head at some distance from its edge gradually becomes steeper, which leads to the
formation of a new hydraulic jump of the form of BC. At the same time, the water strip AB ahead of the front of
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Fig. 1. Wave obtained in laboratory modeling of the dam-break problem with a dry bed in the
tailwater: (a) general view: position of the flat shield specifying the initial level difference (1) and
wave head (2); (b) wave head (AB is a thin layer and BC is a hydraulic jump).

this jump is elongated and becomes thinner. As a result, the wave head takes the original shape (Fig. 1b). Next,
this process occurs periodically.

In the present paper, the wave-head flow over a dry bed described above is modeled as a discontinuous wave
propagating over a dry bed using the first approximation of shallow water theory. This modeling approach is based
on a modified law of conservation of total momentum that takes into account the concentrated momentum losses
due to the formation of local turbulent vortex structures at discontinuous-wave fronts. A quantitative estimate of
these losses is obtained by deriving the shallow water equations from the Navier–Stokes equations with allowance
for the viscosity, which has a rapidly increasing effect in the turbulent flow regions described by discontinuous
waves. The heuristic parameter appearing in this case is chosen so as to provide good agreement with results of
laboratory experiments [21–23]. The stability of the discontinuous waves admitted by the modified system of the
conservation laws of shallow water theory is studied. As an example, a comparative analysis is performed of the
solutions of the dam-break problem obtained for the classical and modified shallow water models. The analysis shows
that, compared to the classical model, the modified model provides a much better fit to the average experimental
parameters of the waves propagating over a dry bed. At the same time, a detailed description of the pulsating
quasi-stationary processes at the wave head requires the use of higher-level models.

1. Basic Conservation Laws of Shallow Water Theory. In the case of a rectangular horizontal bed
of constant width ignoring bottom friction, the basic conservation laws of shallow water theory [1–5] are written as

ht + qx = 0; (1.1)

qt + (qu + gh2/2)x = 0, (1.2)

where h(x, t), q(x, t), and u = q/h are the flow depth, flow rate, and fluid velocity, respectively, and g is the
acceleration due to gravity. Equations (1.1) and (1.2) are differential forms of the physical conservation laws for
mass and total momentum [5]. Equations (1.1) and (1.2) lead to the Hugoniot conditions at the discontinuous-wave
front:

D[h] = [q]; (1.3)

D[q] = [qu + gh2/2]. (1.4)

Here D = xt is the wave propagation velocity and [f ] = f1 − f0 is the jump of the function f at the wave front
x = x(t):

f0 = f(x(t) + 0, t), f1 = f(x(t) − 0, t).
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The average value of the function f at the discontinuous-wave front will be denoted by

〈f〉 = (f0 + f1)/2. (1.5)

Then, from the Hugoniot condition (1.3) for the mass conservation law (1.1), we have

D − 〈u〉 = [q]/[h] − 〈u〉 = 〈h〉[u]/[h]. (1.6)

Because, in view of (1.5) and (1.6), we have

D[q] − [qu] = (D − 〈u〉)[q] − 〈q〉[u] = (〈h〉[q] − 〈q〉[h])[u]/[h] = (h0q1 − h1q0)[u]/[h].

From the Hugoniot condition (1.4) for the total-momentum conservation law (1.2) and the relation [h2/2] = (h2
1 −

h2
0)/2 = 〈h〉[h], we obtain

(h0q1 − h1q0)[u]/[h] = h0h1[u]2/[h] = g〈h〉[h]. (1.7)

Formula (1.7) implies that the velocity jump [u] and the depth jump [h] at the discontinuous-wave front are
related by the condition

[u] = B1(h0, h1)[h], (1.8)

where

B1(h0, h1) =
√

g〈h〉/(h0h1) =
√

g(h0 + h1)/(2h0h1). (1.9)

Because

lim
h0→0

B1(h0, h1) = +∞,

system (1.1), (1.2) does not admit the propagation finite-amplitude discontinuous waves over a dry bed in which
the depth ahead of the wave front h0 = 0. As shown in Sec. 2, The reason for this is that the classical total-
momentum conservation law (1.2) ignores the concentrated source term responsible for the total-momentum losses
at the discontinuous-wave front.

2. Discontinuous Waves Propagating over a Dry Bed and Their Stability. In the Hugoniot
condition (1.3) for the mass conservation law (1.1), we set

h0 = u0 = 0, h1 > 0. (2.1)

This implies that a discontinuous wave propagates over a dry bed. Substitution of values (2.1) into condition (1.3)
yields

Dh1 = q1 = h1u1 ⇒ D = u1, (2.2)

i.e., the propagation velocity of this discontinuous waves coincides with the fluid velocity behind its front.
The system of shallow water equations (2.1), (2.2), like any other hyperbolic system of the second order [5],

admits an infinite number of linearly independent conservation laws

∂U(h, u)
∂t

+
∂F (h, u)

∂x
= 0. (2.3)

If the conservation law (2.3) is incompatible with the mass conservation law (1.1) for discontinuous waves (2.2)
propagating over a dry bed (2.1), then, in view of the normalization U(0, 0) = F (0, 0) = 0, the disbalance δU of the
quantity U(h, u) at the front of such a wave is calculated from the formula

δU = D[u] − [F ] = u1U(h1, u1) − F (h1, u1). (2.4)

For δU > 0, the quantity U(h, u) on the discontinuous wave increases, and for δU < 0, it decreases. Applying
formula (2.4) to the total-momentum conservation law (1.2), we obtain the relation

δq = −gh2
1/2, (2.5)

from which it follows that on the discontinuous wave (2.2) propagating over the dry bed (2.1), there is a total-
momentum loss (δq < 0).

To justify such losses theoretically, we consider the total-energy conservation law

et + (eu + ghq/2)x = 0, (2.6)
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where e = (qu + gh2)/2 is the total energy of the flow, which, in shallow water theory, is the sum of the kinetic
energy ek = qu/2 = hu2/2 and potential energy ep = gh2/2 [5]. For smooth solutions, Eq. (2.6) is a differential
corollary of the basic system (1.1), (1.2). To derive this equation, it is necessary to multiply Eq. (1.1) by u and
subtract the result from Eq. (1.2). As a result, dividing by h, we obtain the following equation for the change in
the local momentum of each particle of the fluid:

ut + (u2/2 + gh)x = 0. (2.7)

Combining Eq. (2.7) multiplied by q/2 and Eq. (1.2) multiplied by u/2, we obtain the equation describing
the change in the kinetic energy ek:

(ek)t + (uek)x + gqhx = 0. (2.8)

Combining Eq. (2.8) and Eq. (1.1) multiplied by gh, we finally obtain the differential form (2.6) of the total-energy
conservation law, for which the Hugoniot condition is given by

D[e] = [ue + ghq/2]. (2.9)

Applying formula (2.4) to the total-energy conservation law (2.6), we obtain the relation

δe = −gh2
1u1/2, (2.10)

which implies that for

u1 = D > 0 (2.11)

on the discontinuous wave (2.2) propagating over the dry bed (2.1), there is a loss of the total energy of the incoming
flow (δe < 0). For

u1 = D < 0 (2.12)

the total energy on the discontinuous wave (2.1), (2.2) increases (δe > 0).
If the shallow water equations are considered in terms of the general theory of hyperbolic systems of conser-

vation laws with a convex expansion [24, 25], the total-energy conservation law is a closing convex conservation law
and the total-energy loss at discontinuities (δe < 0) is therefore the entropic [25] (energetic [5]) stability criterion
for discontinuous waves. In view of this, the discontinuous wave (2.2), propagating over the dry bed (2.1) is stable
if condition (2.11) is satisfied, and it is unstable if condition (2.12) holds.

In shallow water theory, the total-energy loss on discontinuous waves can be treated as a process in which
part of this energy in real flow is converted to the energy of small-scale vortices. In the classical case, these vortices
are moved upstream of the wave front, where they are gradually damped under the action of viscosity. In the
flows described by discontinuous waves propagating over a dry bed, this vortex motion, by virtue of condition
(2.2), is localized at the wave front, and, in view of the equality δe = u1δq implied by (2.5) and (2.10), the energy
δe converted to this motion is totally expended in the incoming-flow deceleration related to the loss of its total
momentum.

The discontinuous waves (2.1), (2.2), and (2.11) formally also satisfy the evolutionary [4] (characteristic
[5, 23]) stability condition

λ1
s > D > λ0

s ≥ λ0
r , D > λ1

r , (2.13)

where λ0
r = u0 − c0 = 0 and λ0

s = u0 + c0 = 0 are the velocities of the r- and s-characteristics ahead of the
wave front in the dry bed area h0 = u0 = 0 and λ1

r = u1 − c1 and λ1
s = u1 + c1 are the velocities of the r- and

s-characteristics behind the discontinuous-wave front, respectively. The r-invariant (r = u − 2c) is conserved along
the r-characteristics, and the s-invariant (s = u + 2c) along the s-characteristics (c =

√
gh is the propagation

velocity of small perturbations in shallow water theory [5]). Inequalities (2.13) imply that three characteristics λ0
r ,

λ0
s, and λ1

s arrive at the front of the stable discontinuous wave (2.1), (2.2), (2.11), and only one λ1
r-characteristic

leaves it. Similarly, it can be shown that the discontinuous waves (2.1), (2.2), (2.12) unstable under the energetic
criterion do not also satisfy the characteristic stability condition (2.13).

Below a modified total-momentum conservation law is obtained which takes into account the concentrated
momentum losses due to local flow transition to turbulence in the fluid surface layer at the discontinuous-wave
front.
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Fig. 2. Diagram of long-wave flow with a transition region of turbulent vortex flow modeled by a
discontinuous wave.

3. Derivation of the Shallow Water Equations with Allowance for the Transition Region at the
Discontinuous-Wave Front. Because in the first approximation of the shallow water equations, discontinuous
solutions are discontinuous waves that model the transition regions

G = {(x, t): a(t) ≤ x ≤ b(t)} (3.1)

of turbulent vortex flow (Fig. 2), in view of the basic hypothesis of the long-wave approximation [1], the characteristic
length l = O(b(t) − a(t)) of such transition regions should simultaneously satisfy the two inequalities H 	 l 	 L

(H is the characteristic flow depth and L is the characteristic wavelength in the region of G = R
2 \ G of potential

flow without discontinuous waves). Thus, the description of discontinuous waves as discontinuous solutions in the
long-wave approximation of shallow water theory involves the following two successive passages to the limit:

δ = H/l → 0, ε = l/L → 0.

We first consider the shallow water equations obtained from the spatially two-dimensional equations of fluid
motion for

H → 0, l = const, L = const ⇒ δ → 0.

For this, we assume that in the region G, the flow is potential and is described by the continuity equation

ux + wz = 0, (3.2)

the equation of no vortex

uz − wx = 0 (3.3)

and the Euler equation

vt + (v∇)v + ∇(p + gz) = 0, (3.4)

which can be written in component form

ut + uux + wuz + px = 0; (3.5)

wt + uwx + wwz + pz + g = 0. (3.6)

Here ∇ = (∂/∂x, ∂/∂z) is the two-dimensional gradient operator, v(x, z, t) = (u, w) is the two-dimensional velocity,
and p(x, z, t) is the pressure divided by the constant fluid density.

Because the fluid flow occurs over a horizontal bottom which coincides with the x axis, for system (3.2)–(3.6)
we impose the following natural boundary conditions [1]: at the bottom at z = 0, the nonpenetration condition

w(x, 0, t) = 0, (3.7)
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and on the free surface at z = h [h = h(x, t) is the flow depth], the condition of constant pressure

p(x, h, t) = p0 = 0 (3.8)

and the kinematic condition

w(x, h, t) = ht + u(x, h, t)hx. (3.9)

Writing Eqs. (3.2)–(3.6) and the boundary conditions (3.7)–(3.9) in the dimensionless variables

z∗ =
z

H
, h∗ =

h

H
, g∗ =

g

a
, u∗ =

u

v
, p∗ =

p

v2
; (3.10)

x∗ =
x − x̃

L
, t∗ =

v(t − t̃)
L

, w∗ =
Lw

vH
, x̃ = const, t̃ = const, (3.11)

where v =
√

aH is the characteristic velocity and a is the characteristic acceleration, and introducing the small
parameter Δ = H/L, we obtain

∂u∗

∂x∗ +
∂w∗

∂z∗
= 0,

∂u∗

∂z∗
− Δ2 ∂w∗

∂x∗ = 0; (3.12)

∂u∗

∂t∗
+ u∗ ∂u∗

∂x∗ + w∗ ∂u∗

∂z∗
+

∂p∗

∂x∗ = 0; (3.13)

Δ2
(∂w∗

∂t∗
+ u∗ ∂w∗

∂x∗ + w∗ ∂w∗

∂z∗
)

+
∂p∗

∂z∗
+ g∗ = 0; (3.14)

w∗(x∗, 0, t∗) = 0; (3.15)

p∗(x∗, h∗, t∗) = 0; (3.16)

w∗(x∗, h∗, t∗) =
∂h∗

∂t∗
+ u∗(x∗, h∗, t∗)

∂h∗

∂x∗ . (3.17)

If δ → 0, then, Δ = δε → 0, and from the second equation (3.12), we obtain

∂u∗

∂z∗
= 0 ⇒ u∗ = u∗(x∗, t∗), (3.18)

and from Eq. (3.14), in view of boundary condition (3.16), it follows that the fluid pressure varies under the
hydrostatic law

p∗ = g∗(h∗ − z∗). (3.19)

Integrating the first equation (3.12) with respect to z∗ from 0 to h∗ taking into account the integral identity
h∫

0

∂f

∂x
dz =

∂

∂x

( h∫

0

f dz
)
− f

∣∣
∣
z=h

∂h

∂x
, (3.20)

boundary conditions (3.15) and (3.17), and formulas (3.18), we obtain the mass conservation law

∂h∗

∂t∗
+

∂q∗

∂x∗ = 0, q∗ = h∗u∗. (3.21)

Equations (3.13), in view of formulas (3.18) and (3.19), implies the law of conservation of the local momentum

∂u∗

∂t∗
+

∂

∂x∗
( (u∗)2

2
+ g∗h∗

)
= 0. (3.22)

Combining Eq. (3.21) multiplied by u∗ and Eq. (3.22) multiplied by h∗, we obtain the total momentum conservation
law

∂q∗

∂t∗
+

∂

∂x∗
(
q∗u∗ +

g∗(h∗)2

2

)
= 0. (3.23)
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As a result, for δ → 0 in the potential flow region G, the classical system (3.21), (3.23) of irrotational shallow water
is obtained, which coincides with the basic system (1.1), (1.2).

Remark 1. The above derivation of the shallow water equations (3.21) and (3.23) differs from the more
standard method of their derivation first proposed in [26], according to which the dimensionless vertical velocity is
defined by the formula

w∗∗ = Hw/(vL) = Δ2w∗,

which, in dimensionless variables (3.10), (3.11), preserves the form of the no-vortex equation

∂u∗

∂z∗
− ∂w∗∗

∂x∗ = 0,

but leads to a change in the form of the continuity equation

Δ2 ∂u∗

∂x∗ +
∂w∗

∂z∗
= 0.

As a result, the shallow water equations (1.1) and (1.2) are obtained not for Δ = 0 but only as a first approximation
in the parameter Δ2, which explains the origin of the term “the first approximation of shallow water theory” [1, 26].

An advantage of the dimensionless variables (3.10) and (3.11) is that their use allows one to derive the
shallow water equations (3.21) and (3.23) even in the zero (or initial) approximation in the parameter Δ2. In
addition, as noted in [27], this method of specifying dimensionless quantities is more natural since it preserves the
form of the kinematic relation for a moving particle v = dr/dt in the dimensionless variables, and, in addition,
it explicitly introduces the underlying hypothesis of hydrodynamic theory that, in the case of shallow water, the
vertical acceleration of fluid particles is smaller than the acceleration due to gravity the.

4. Shallow Water Equations in the Transition Region G. Since the flow is vortex and turbulent by
virtue of the above assumptions in the transition region (3.1), it can be described using the spatially two-dimensional
continuity equations (3.2) and the Navier–Stokes equations

vt + (v∇)v + ∇(p + gz) = 2 div (νD), (4.1)

where

D =
( ux (uz + wx)/2

(uz + wx)/2 wz

)
(4.2)

is the two-dimensional strain rate tensor, ν(v) = ν1 + ν2(v) is the viscosity coefficient, which is equal to the sum of
the kinematic viscosity ν1 = const and the turbulent viscosity ν2(v). Since ν2 � ν1, ignoring the quantity ν1, we
assume that ν(v) = ν2(v). In view of (4.2), Eq. (4.1) can be written in component form

ut + uux + wuz + px = 2(νux)x + (ν(uz + wx))z ; (4.3)

wt + uwx + wwz + pz + g = (ν(uz + wx))x + 2(νwz)z. (4.4)

For system (3.2), (4.3), (4.4), we impose boundary conditions. At the bottom at z = 0, we specify the non-
penetration condition (3.7) for the vertical velocity w and the no-slip or slip condition for the horizontal component
u [28]. On the free surface, we distinguish a strip S of the characteristic thickness d (see Fig. 2) inside which breaks
leading to the formation of small-scale turbulent vortex structures occur. Assuming that d 	 H and passing to the
limit as d → 0, we replace this strip by the smooth free-surface line

z − h(x, t) = 0, (4.5)

on which the flow parameters are the flow parameters inside it averaged over the thickness of the strip S. This
passage to the limit allows the flow to be described within the framework of Eqs. (3.2) and (4.1) specified inside
the regular region

G̃ = {(x, z, t): a(t) ≤ x ≤ b(t), 0 ≤ z ≤ h(x, t)} (4.6)

with the material free boundary (4.5), on which the following kinematic (3.9) and dynamic conditions are satisfied
[28]:

pn = 2(νD + σNE)n + ∇hσ. (4.7)
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Here E is the unit tensor, n is the unit outward normal vector to the free-surface line (4.5),

n = (−hx, 1)/r (r =
√

1 + (hx)2 ), (4.8)

N = (1/2)(hx/r)x is the average curvature of this line,

∇h = ∇− n(n∇) = s(s∇) (4.9)

is the gradient operator along the line (4.5), and s = (1, hx)/r is the unit vector tangent to the line (4.5). The
function σ = σ(v) specifies the free energy concentrated on the line (4.5). This energy is induced by turbulent
vortex motion inside the strip S, which, for d → 0, is pulled to the free surface line (4.5). Multiplying the condition
(4.7) scalarly by the unit vectors n and s and taking into account that, by virtue of formulas (4.8) and (4.9),
ns = n∇hσ = 0, we write this vector condition in the form of two scalar relations

p = 2(νnDn + σN), 2νsDn + s∇σ = 0, (4.10)

where

r2nDn = wz − (uz + wx)hx − uxh2
x, r2sDn = (uz + wx)(1 − h2

x)/2 − (ux − wz)hx,

rs∇σ =
dσ(v)

dx
= σu(ux + uzhx) + σw(wx + wzhx).

In Eqs. (3.2), (4.3), and (4.4) and boundary conditions (3.7), (3.9), and (4.10), we convert to the dimensionless
variables (3.10) and

x∗ =
x − x̃

l
, t∗ =

v(t − t̃)
l

, w∗ =
lw

vH
, ν∗ =

lν

vH2
, σ∗ =

σ

Hv2
. (4.11)

As a result, the equations are written as

∂u∗

∂x∗
+

∂w∗
∂z∗

= 0; (4.12)

∂u∗

∂t∗
+ u∗ ∂u∗

∂x∗
+ w∗

∂u∗

∂z∗
+

∂p∗

∂x∗
= 2δ2 ∂

∂x∗

(
ν∗

∂u∗

∂x∗

)
+

∂

∂z∗

(
ν∗

(∂u∗

∂z∗
+ δ2 ∂w∗

∂x∗

))
; (4.13)

δ2
(∂w∗

∂t∗
+ u∗∂w∗

∂x∗
+ w∗

∂w∗
∂z∗

)
+

∂p∗

∂z∗
+ g∗ = δ2 ∂

∂x∗

(
ν∗

(∂u∗

∂z∗
+ δ2 ∂w∗

∂x∗

))
+ 2δ2 ∂

∂z∗
(
ν∗

∂u∗

∂x∗

)
, (4.14)

and the boundary conditions become

w∗(x∗, 0, t∗) = 0; (4.15)

w∗(x∗, h∗, t∗) =
∂h∗

∂t∗
+ u∗(x∗, h∗, t∗)

∂h∗

∂x∗
; (4.16)

p∗ = 2δ2(ν∗(nDn)∗ + σ∗N∗), 2rν∗(sDn)∗ +
dσ∗(u∗, w∗)

dx∗
= 0, (4.17)

where

r2(nDn)∗ =
∂w∗
∂z∗

−
(∂u∗

∂z∗
+ δ2 ∂w∗

∂x∗

)∂h∗

∂x∗
− δ2 ∂u∗

∂x∗

(∂h∗

∂x∗

)2

,

r2(sDn)∗ =
1
2

(∂u∗

∂z∗
+ δ2 ∂w∗

∂x∗

)(
1 − δ2

(∂w∗
∂x∗

)2)
− δ2 ∂h∗

∂x∗

(∂u∗

∂x∗
− ∂w∗

∂z∗
)
,

N∗ =
1
2

∂

∂x∗

(1
r

∂h∗

∂x∗

)
, r =

√

1 + δ2
(∂h∗

∂x∗

)2

.
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In passing to the limit as δ → 0, in view of the first boundary condition (4.17), which becomes

p∗(x∗, h∗, t∗) = 0,

it follows from Eq. (4.14) that the pressure in the region (4.6) varies under the hydrostatic law (3.19), and, using
(3.19), from Eq. (4.13) we obtain

∂u∗

∂t∗
+ u∗ ∂u∗

∂x∗
+ w∗

∂u∗

∂z∗
+ g∗

∂h∗

∂x∗
=

∂

∂z∗
(
ν∗

∂u∗

∂z∗
)
. (4.18)

The second boundary condition (4.17) for δ → 0 becomes

ν∗
∂u∗

∂z∗

∣
∣
∣
z∗=h∗

+
dσ∗(u∗, w∗)

dx∗
= 0. (4.19)

Integrating Eq. (4.12) with respect to z∗ from 0 to h∗, in view of formulas (3.20) and boundary conditions (4.15)
and (4.16), we obtain the mass conservation law

∂h∗

∂t∗
+

∂q∗

∂x∗
= 0, q∗ =

h∗∫

0

u∗(x∗, z∗) dz∗ (4.20)

in transition region (4.6).
For the specified functions ν(v) and σ(v) [the first of them is specified in the region (4.6), and the second

on the free surface (4.5)], Eqs. (4.12), (4.18), and (4.20) with the corresponding boundary conditions form a closed
system of vortex shallow water equations which describe turbulent vortex flow (turbulent bore [3]) in the transition
region (4.6). The other methods for describing the structure of a turbulent bore (in particular, using multilayered
nonvortex shallow water models) were considered in [3, 29–32]. For ν = σ = 0, system (4.12), (4.18), (4.20) becomes
the ideal vortex shallow water equations, which were studied in [3, 33–37].

5. Total-Momentum Conservation Law in the Transition Region G. Combining Eq. (4.18) and
Eq. (4.20) multiplied by u∗, we obtain the following equation in divergent form

∂u∗

∂t∗
+

∂

∂x∗

(
(u∗)2 + g∗h∗

)
+

∂

∂z∗
(u∗w∗) =

∂

∂z∗
(
ν∗

∂u∗

∂z∗
)
.

Integration of the above equation with respect to z∗ from 0 to h∗ taking into account Eq. (3.20), the formula
h∫

0

∂f

∂t
dz =

∂

∂t

( h∫

0

f dz
)
− f

∣
∣
∣
z=h

∂h

∂t
,

and boundary conditions (4.15) and (4.16) leads to the total-momentum conservation law

∂q∗

∂t∗
+

∂

∂x∗

( h∗∫

0

(u∗)2dz∗ +
g∗(h∗)2

2

)
= ν∗

∂u∗

∂z∗

∣
∣
∣
z∗=h∗

z∗=0
(5.1)

in the transition region (3.1).
The quantity

Rb = −ν∗
∂u∗

∂z∗

∣
∣
∣
z∗=0

(5.2)

on the right side of Eq. (5.1) is the bottom friction force, whose calculation requires the use of the boundary
conditions at z∗ = 0, leading to the formation of a near-bottom boundary layer. Since the irrotational shallow
water equations (3.21) and (3.23), which are valid for the external region G, ignore the bottom friction, in the
conservation laws for vortex shallow water (4.20) and (5.1) specified in the transition region G, we will also ignore
the bottom friction force (5.2) and the thickness of the near-bottom boundary layer. This allows the total-momentum
conservation law (5.1) in the transition region G to be written as

∂q∗

∂t∗
+

∂

∂x∗

( h∗∫

0

(u∗)2dz∗ +
g∗(h∗)2

2

)
= R, (5.3)
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where, in view of boundary condition (4.19), the quantity

R = ν∗
∂u∗

∂z∗

∣
∣∣
z∗=h∗

= −dσ∗(u∗, w∗)
dx∗

characterizes the total-momentum losses due to the action of the free energy σ∗ concentrated on the free surface.
For an approximate determination of the quantity R, we assume that, on the free surface (4.5) for δ → 0,

the turbulent viscosity coefficient ν̃ = ν∗|z∗=h∗ and the vertical velocity component w̃ = w∗|z∗=h∗ are linked by the
relation

ν̃ = γ∗w̃ + o(γ∗), 0 < γ∗ = const 	 1. (5.4)

The inequality γ∗ > 0 follows from the inequalities ν̃ > 0 and w̃ > 0, the last of which follows from the stability
condition for discontinuous waves [5].

Remark 2. Formula (5.4) can be derived as follows. Assuming that the viscosity coefficient ν̃ is a function
of only the vertical velocity component w̃ to within o(δ), we expand this function in a Taylor series for w̃ = 0 to
within O(w̃ 2). As a result, we have

ν̃(w̃) = ν̃(0) + ν̃′(0)w̃ + ν̃′′(η)w̃2/2, (5.5)

where η ∈ (0, w̃). Relation (5.4) follows from formula (5.5) provided that

ν̃(0) = 0, w̃ |ν̃′′(η)| 	 ν̃′(0) 	 1.

In this case, the parameter γ∗ is defined by the formula

γ∗ = ν̃′(0).

In view of condition (5.4), Eq. (4.18) implies that, to within o(γ∗),

R = ν∗
∂u∗

∂z∗

∣
∣
∣
z∗=h∗

= −γ∗
{∂u∗

∂t∗
+

∂

∂x∗

( (u∗)2

2
+ g∗h∗

)}
.

This allows the total-momentum conservation law (5.3) to be written in divergent form

∂ (q∗ + γ∗u∗)
∂t∗

+
∂

∂x∗

( h∗∫

0

(u∗)2 dz∗ +
g∗(h∗)2

2
+ γ∗

((u∗)2

2
+ g∗h∗

))
= 0. (5.6)

In Sec. 6, Eq. (5.6) is used to derive a modified Hugoniot condition at the discontinuous-wave front for the
total-momentum conservation law.

6. Modified Hugoniot Conditions at the Discontinuous-Wave Front. By passing to the limit

l → 0, L = const ⇒ ε = l/L → 0, (6.1)

we obtain modified Hugoniot conditions at the discontinuous-wave front for the shallow water equations. If this
passage to the limit is considered with respect to the external dimensionless variables (3.11), the internal region
(3.1) is transformed to the discontinuity line

x∗ = x∗(t∗) = lim
l→0

a∗(t∗) = lim
l→0

b∗(t∗) (a∗ = a/L; b∗ = b/L) (6.2)

for which we assume that

D∗ =
dx∗

dt∗
= lim

l→0

da∗

dt∗
= lim

l→0

db∗

dt∗
. (6.3)

Outside the discontinuity line (6.2), the flow is described by the smooth solution u∗(x∗, t∗) = (h∗, u∗) of Eqs. (3.21)
and (3.22), which on both sides of this line takes the limiting values

u∗
0(t

∗) = u∗(x∗(t∗) + 0, t∗), u∗
1(t

∗) = u∗(x∗(t∗) − 0, t∗). (6.4)

To obtain modified Hugoniot conditions relating the quantities (6.4), we fix the time t∗ = τ and consider
the passage to the limit (6.1) with respect to the internal dimensionless variables (4.11), where

x̃ = Lx∗(τ), t̃ = τL/v. (6.5)
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In the dimensionless variables (4.11) and (6.5), the point with the coordinates x∗ = x∗(τ) and t∗ = τ on the
discontinuity line (6.2) coincides with the coordinate origin x∗ = t∗ = 0.

Because formulas (3.11) and (4.11) imply that

dx∗ = ε dx∗, dt∗ = ε dt∗ ⇒ D∗ =
dx∗

dt∗
=

dx∗
dt∗

= D∗,

taking into account that the derivative dD∗/dt∗ does not depend on l, we obtain

lim
l→0

dD∗
dt∗

= lim
l→0

dD∗

dt∗
=

dD∗

dt∗
lim
l→0

ε = 0.

In view of formulas (6.2) and (6.3), this implies that, as l → 0 (ε → 0), the transition region (3.1) in the internal
variables (4.11) and (6.5) is transformed to the strip of constant width

G∗ = {(x∗, t∗): ξ0 − D∗t∗ ≤ x∗ ≤ ξ1 − D∗t∗}, (6.6)

where

ξ0 = lim
l→0

a∗(0), ξ1 = lim
l→0

b∗(0), D∗ = D∗(τ) = D∗(0), a∗ = (a − x̃)/l, b∗ = (b − x̃)/l.

On both sides of the strip G∗, by virtue of conditions (6.4) and the equalities

∂u∗

∂x∗
= ε

∂u∗

∂x∗ ,
∂u∗

∂t∗
= ε

∂u∗

∂t∗
,

the solution is constant and is defined by the formula

u∗(x∗, t∗) =

{
u∗

0, x∗ ≥ ξ1 − D∗t∗,

u∗
1, x∗ ≤ ξ0 − D∗t∗,

(6.7)

where u∗
i = (h∗

i , u
∗
i ) = u∗

i (τ) = (h∗
i (τ), u∗

i (τ)) (i = 0, 1).
Thus, by passage to the limit (6.1) with respect to the internal dimensionless variables (4.11) and (6.5), the

flow is described by Eqs. (4.12), (4.20), and (5.6) inside the strip (6.6), on whose boundary conditions (6.7) are
satisfied. This problem admits a self-similar solution that depends on the variables ξ = x∗ − D∗t∗ and z∗. We
write Eqs. (4.20) and (5.6) in the variables ξ and z∗ and integrate them with respect to ξ from ξ0 to ξ1 taking into
account the following boundary conditions implied by formula (6.7):

h∗(ξ) =

{
h∗

0, ξ ≥ ξ1,

h∗
1, ξ ≤ ξ0,

u∗(ξ, z∗) =

{
u∗

0, ξ ≥ ξ1,

u∗
1, ξ ≤ ξ0.

As a result, Eq. (4.20) leads to the standard Hugoniot condition

D∗[h∗] = [q∗] (6.8)

for the mass conservation law (3.21), and Eq. (5.6) implies the relation

D∗[q∗ + γ∗u∗] = [q∗u∗ + g∗(h∗)2/2 + γ∗((u∗)2/2 + g∗h∗)]. (6.9)

Returning to the dimensional variables by formulas (3.10), from relations (6.8) we obtain the standard Hugoniot
condition (1.3) for the mass conservation law (1.1), and from relation (6.9), we have the modified Hugoniot condition

D[q + γu] = [qu + gh2/2 + γ(u2/2 + gh)] (D = vD∗; γ = Hγ∗) (6.10)

for the total-momentum conservation law.
7. Modified Equations of Irrotational Shallow Water. Because the total-momentum losses due to

the formation of small-scale turbulent vortex structures in the fluid surface layer occur only at discontinuous-wave
fronts, it follows that, on the continuous solutions, the modified irrotational shallow water equations taking into
account these losses should be equivalent to the classical equations (1.1) and (1.2) and on the discontinuity lines, they
should imply the Hugoniot conditions (1.3) and (6.10). These requirements are satisfied by the system consisting
of the basic mass conservation law (1.1) and the modified total-momentum conservation law

(q + γu)t + (qu + gh2/2 + γ(u2/2 + gh))x = 0. (7.1)
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Equation (7.1) is a linear combination of Eqs. (1.2) and (2.7). Using the notation Q = q + γu = h̄u, h̄ = h + γ,
h̃ = h + γ/2, and ĥ = h + 2γ, Eq. (7.1) can be written in more compact form

Qt + (h̃u2 + ghĥ/2)x = 0, (7.2)

and the corresponding Hugoniot condition in the form

D[Q] = [h̃u2 + ghĥ/2]. (7.3)

Since for the transformation Q = Q(q), in which q = (h, q) and Q = (h, Q) and which transforms system
(1.1), (1.2) to system (1.1), (7.2), the Jacobi matrix determinant has the form

∣
∣
∣
∂Q

∂q

∣
∣
∣ =

∣
∣
∣
∣

1 0
−γu/h 1 + γ/h

∣
∣
∣
∣ = 1 +

γ

h
;

on the smooth solutions, these systems are equivalent for all h �= 0, i.e., over the entire hyperbolicity region (h > 0)
of the shallow water model. To analyze the compatibility of systems (1.1), (1.2) and (1.1), (7.2) on discontinuous
solutions, we transform relation (7.3). Using notation (1.5), condition (1.3) and formulas (1.6) and (1.7), relation
(7.3) can be written as

(h0h1 + γ〈h〉)[u]2/[h] = g(〈h〉 + γ)[h],

which implies the dependence

[u] = B2(h0, h1, γ
∗)[h], (7.4)

where

B2(h0, h1, γ
∗) =

√
g(〈h〉 + γ)/(h0h1 + γ〈h〉), γ = Hγ∗. (7.5)

Because, in view of formula (1.9),

B2
1 − B2

2 =
g〈h〉
h0h1

− g(〈h〉 + γ)
h0h1 + γ〈h〉 =

γg[h]2

h0h1(h0h1 + γ〈h〉) , (7.6)

dependences (1.8) and (7.4) are different for all [h] = h1 − h0 �= 0. This implies that systems of conservation laws
(1.1), (1.2) and (1.1), (7.2) are incompatible on discontinuous waves of any finite amplitude [h] �= 0. At the same
time, formula (7.6) implies that function (7.5) can be expanded in the small parameter γ∗

B2(h0, h1, γ
∗) = B1(h0, h1)(1 + [h∗]2γ∗/(h∗

0h
∗
1〈h∗〉) + O((γ∗)2))

by virtue of which, for finite dimensionless depths h∗
0 and h∗

1, condition (7.4) differs from the classical condition
(1.8) only by a quantity of order O(γ∗[h∗]2). Moreover, in contrast to the classical condition (1.8), the modified
condition (7.4) at h0 → 0 becomes the finite relation

u1 =
√

gh1(h1 + 2γ)/γ =
√

θgh1, (7.7)

where

θ = u2
1/(gh1)2 = 2 + h1/γ = 2 + h∗

1/γ∗ (7.8)

is the Froude number behind the front of a discontinuous wave propagating over a dry bed.
Thus, in contrast to the classical system (1.1), (1.2), the modified system of conservation laws of shallow

water theory (1.1), (7.2) admits discontinuous wave propagation over a dry bed h0 = 0, and for finite dimensionless
depths h∗

0 > 0 and h∗
1 > 0, its corresponding Hugoniot conditions (1.3) and (7.3) coincide with the classical

conditions (1.3), (1.4) to within O(γ∗[h∗]2).
8. Stable Discontinuous Waves Admitted by the Modified Shallow Water Equations. We

distinguish stable discontinuous waves admitted by the basic conservation law of mass (1.1) and the modified
conservation law of total momentum (7.2). If a discontinuous wave propagates over the dry bed (2.1), (2.2), this
problem, in essence, was solved in Sec. 3 where it was shown that this wave is stable under condition (2.11) when it
flows on the dry bed, and it is unstable under condition (2.12) when it runs off the dry bed. In the present section,
we consider the general case of discontinuous-wave propagation over a bed of finite depth.
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In a coordinate system in which the discontinuous-wave velocity D = 0, from the Hugoniot condition (1.3)
we obtain

q1 = q0 = q, (8.1)

and from relation (7.4), in view of (8.1), we find

q2 =
B2

2 [h]2

[h−1]2
=

g(〈h〉 + γ)h2
0h

2
1

h0h1 + γ〈h〉 . (8.2)

Setting

h1 > h0 > 0, (8.3)

we show that, ahead of a standing jump, the flow (8.1), (8.2) is supercritical, i.e., satisfies the inequality

v2
0 =

q2

h2
0

=
g(〈h〉 + γ)h2

1

h0h1 + γ〈h〉 > c2
0 = gh0, (8.4)

and behind the jump, it is subcritical, i.e., satisfies the inequality

v2
1 =

q2

h2
1

=
g(〈h〉 + γ)h2

0

h0h1 + γ〈h〉 < c2
1 = gh1. (8.5)

Since inequality (8.4) can be written as

h1(h1〈h〉 − h2
0) + γ(h2

1 − 〈h〉h0) > 0,

and inequality (8.5) can be written as

h0(h2
1 − 〈h〉h0) + γ(h1〈h〉 − h2

0) > 0,

their validity, in view of condition (8.3), follows from the obvious inequalities h1 > 〈h〉 = (h0 + h1)/2 > h0.
Inequalities (8.4) and (8.5) imply that the standing jump (8.1)–(8.3) satisfies the characteristic stability

criterion (2.13) for q < 0 and does not satisfy it for q > 0. This implies that, in a coordinate system in which the
wave front velocity D = 0, the stable discontinuous waves admitted by the modified shallow water equations (1.1)
and (7.2) are distinguished by the condition

q[h] = q(h1 − h0) < 0, (8.6)

which implies that the flow depth increases as the fluid passes through the discontinuity. In transforming to a
coordinate system in which the fluid in the region with a smaller depth is at rest, from inequalities (8.6) we find
that the stable discontinuity waves propagating over a stationary background u0 = 0 are distinguished by the
condition

D[h] = D(h1 − h0) > 0, (8.7)

which generalizes conditions (2.1) and (2.11).
Let us use the energetic stability criterion for discontinuous waves [5], according to which the total flow

energy decreases in passing through a discontinuity. Relation (2.9) implies that in a coordinate system in which
D = 0, the total-energy loss condition at a discontinuous-wave front is given by the inequality

[2ue + ghq] = [q(v2 + 2gh)] > 0.

Transforming this inequality with the use of formulas (8.1) and (8.2), we obtain the condition

q(q2[h−2] + 2g[h]) = 2q[h]
(
g − 〈h〉q2

h2
0h

2
1

)
= − gq[h]3

2(h0h1 + γ〈h〉) > 0,

which is equivalent to condition (8.6).
Thus, as in the case of the classical system (1.1), (1.2) in the case of the modified system (1.1), (7.2), the

characteristic and energetic stability criteria for discontinuous waves are equivalent, and the stable discontinuities
distinguished by these criteria are specified by the same inequalities (8.6) and (8.7) as in the classical case [5].

9. Dam-Break Problem with a Dry Bed in the Tailwater. As an example, we consider the water
wave flows resulting from dam break in a rectangular bed with a horizontal bottom and a dry bed in the tailwater.

807



200_200_400

à b

1

1

15

10

5

0

2

3

4

x, ñm

h, ñm

40 80_40

15

10

5

0 x, cm

h, ñm

3

1

1

2

4

Fig. 3. Wave profile in the dam-break problem with a dry bed in the tailwater for t = 0.41 (a) and 1.47 sec (b);
curves 1 refer to calculation results and curves 2 refer to experimental data; curves 3 are the classical depression wave
profiles in the tailwater; the right boundary of the classical depression wave is marked as 4.

The points in Fig. 3 show the water free surface profiles at the times t = 0.41 (a) and 1.47 sec (b) obtained in
laboratory modeling of flow in a rectangular tank. This wave flow arose from a sudden removal (at t = 0) of the
flat shield located at the point x = 0, which bounded the stationary fluid of depth H0 = 15 cm in the headwater at
x < 0 (a detailed description of the results of the experiment is given in [21]).

In shallow water theory, this problem is formulated as the Cauchy problem of discontinuity decay with the
following piecewise-constant initial data:

h(x, 0) =

{
H0, x ≤ 0,

0, x > 0,
u(x, 0) = 0. (9.1)

The exact solution of this problem obtained using the classical basic conservation laws of mass (2.1) and total
momentum (2.2) is a centered depression r-wave, in which the flow parameters are defined by the formulas [1, 5]

h(x, t) = (2c0 − ξ)2/(9g), u(x, t) = (2/3)(c0 + ξ), −c0 ≤ ξ = x/t ≤ 2c0 (9.2)

(c0 =
√

gH0 is the initial velocity of propagation of small perturbations in the headwater). In Fg. 3, the solid
curve which at x < 0 becomes the dashed curve corresponds to solution (9.2) at x > 0. From Fig. 3 it follows that
the depression wave (9.2) provides a good fit to the results of the experiment in the headwater (especially at the
time t = 1.47 sec) and a much worse fit in the tailwater. Therefore, we modify the exact solution (9.2) only in the
tailwater, i.e., at x > 0.

The steep head part of the experimental wave, whose front undergoes periodic breaks and whose propagation
velocity is much lower than the velocity of motion of the right boundary of the depression wave (9.2), will be modeled
by the discontinuous wave (2.2), (7.7) propagating over a dry bed (2.1.) In view of this, the exact solution of problem
(9.1) can be constructed as a discontinuous wave of the form (2.2), (7.7), which is conjugate through the constant
flow region (hA, uA) with the left part of the depression wave (9.2). In Fig. 4, this solution is shown by the solid
curve h∗A1A2x5. The constant-flow parameters (hA and uA) are found using the method of adiabats [5] as the
coordinates of the point of intersection of the monotonically decreasing wave r adiabat

u = 2
√

g (
√

H0 −
√

h ) (h < H0) (9.3)

and the monotonically increasing nonclassical shock s-adiabat

u =
√

θgh, (9.4)

whose equation follows from formula (7.7). Solution of the system (9.3), (9.4) yields

hA = α2H0, uA = DA = α
√

θgH0, α = 2/(2 +
√

θ).

The dashed curve in Fig. 4 shows the continuation of the depression wave (9.2) to the right of the point A1.

808



x1

h2

h1

hA

h*

h

x2

G1 G2

A1 A2

F2F1

x3 x4 x5 x6 x7 x

Fig. 4. Wave profiles obtained in modeling of the dam-break
problem with a dry bed in the tailwater.

From a comparison of Figs. 3 and 4, it follows that the exact solution of problem (9.1), shown in Fig. 4 by
the curve h∗A1A2x5, correctly reproduces the steep profile of the experimental wave head but does not reflect the
fact that, on the left side of the tailwater, the experimental points are considerably lower than the depression wave
level (9.2). The reason for this is that the given solution ignores the strong vertical flow resulting from the breaking
of the vertical water wall immediately after the removal of the shield.

Within the framework of the vertically averaged shallow water equations, the only possible method of locally
accounting for the strong vertical flows comparable with the horizontal flows is to introduce discontinuities of the flow
parameters, i.e., discontinuities of the depths and horizontal velocities [23]. From the results of the experiments it
follows that, after the removal of the shield, the flow parameters at the initial discontinuity point x = 0 rapidly reach
the critical values h∗ = h(0, t) = 4H0/9 and u∗ = u(0, t) = 2c0/3 and then remain almost constant throughout the
experiment. This allows the initial vertical flow to be taken into account by using the simplified approach proposed
in [23], in which the initial depth discontinuity [0, H0] is instantaneously transformed to a standing jump [h1, h

∗].
Here h1 is the depth in the constant-flow zone (h1, u1) between the jump [h1, h

∗] located at the point x = 0 and
the discontinuous wave propagating at a constant velocity over the dry bed.

The Hugoniot condition (1.3) for the mass conservation law (1.1) implies that, for a stationary jump [h1, h
∗],

the flow rate is constant:

[q] = 0 ⇒ q∗ = h∗u∗ = q1 = h1u1; (9.5)

therefore, the supercritical flow parameters (h1, u1) are defined as the coordinates of the point at which the shock
adiabat (9.4) intersects the hyperbola

u = q∗/h, q∗ = h∗u∗ = 8H0c0/27. (9.6)

From system (9.5), (9.6), we obtain

h1 = 3
√

(q∗)2/(θg), u1 = 3
√

θgq∗. (9.7)

In Fig. 3a, the profile of the self-similar solution constructed is shown by solid curve 1, and in Fig. 4, it is shown by
the curve h∗h1F1F2x6. At x > 0, in this solution there is, in essence, an artificial separation between the vertical
and horizontal real flows in the tailwater. The vertical flows are concentrated at the depth jump [h1, h

∗] at the point
x = 0 + 0, and the horizontal are distributed in the constant-flow zone h1F2 behind the discontinuous-wave front
(see Fig. 4). This description of the initial stage of the tailwater flow is in good agreement with the experimental
results presented in [22].

The discontinuity [h1, h
∗] is unstable, and the time of its existence t1 is defined as the characteristic time

during which the vertical velocities at the dam location are comparable with the horizontal velocities. The value
of t1 is calculated from the formula t1 = τ

√
H0/g, where τ is the dimensionless time parameter determined by
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matching to the results of laboratory experiments. At the time t1, the discontinuity [h1, h
∗] decays, which, in

shallow water theory, is formulated as the discontinuity decay problem

h(x, t1) =

{
h∗, x ≤ 0,

h1, x > 0,
u(x, t1) =

{
u∗, x ≤ 0,

u1, x > 0,
(9.8)

whose solution, shown by the curve h∗G1G2F1 in Fig. 4, consists of two centered depression waves connected by a
constant-flow region (h2, u2). The quantities h2 and u2 are found as the coordinates of the point of intersection of
the monotonically decreasing r-adiabat (9.3) and the monotonically increasing s-adiabat:

u = u1 − 2
√

g (
√

h1 −
√

h ), h < h1. (9.9)

From system (9.3), (9.9), we obtain

h2 = ((c0 + c1)/2 − u1/4)/g, u2 = c0 − c1 + u1/2, (9.10)

where c0 =
√

gH0 and c1 =
√

gh1. In the depression r-wave, shown by the curve h∗G1 in Fig. 4, the flow parameters
are calculated from the formulas

h(x, t) = (2c0 − η)2/(9g), u(x, t) = 2(c0 + η)/3, 0 ≤ η ≤ u2 − c2, (9.11)

and in the depression s-wave, shown by the curve G2F1 in Fig. 4, they are calculated from the formulas

h(x, t) = (η + 2c1 − u1)2/(9g), u(x, t) = (2η + v1 − 2c1)/3, (9.12)

where u2 + c2 ≤ η ≤ u1 + c1, c2 =
√

gh2, and η = x/(t − t1) (t > t1).
Within the framework of the general dam-break problem (9.1), the constructed solution of the discontinuity

decay problem (9.8) forms a solution consisting of two depression waves (9.11), (9.12) and a discontinuous wave
(2.2), (7.7), which are connected by the constant-flow regions (9.7) and (9.10). In Fig. 3b, this solution is shown
by solid curve 1, and in Fig. 4, by the curve h∗G1G2F1F2x6. Since the right boundary F1 of the depression s-wave
(9.12) propagates at the velocity u1 + c1 higher than the velocity D = u1 of motion of the front F2x6 of the
discontinuous wave (2.2), this solution exists until the point F1 (see Fig. 4) “overtakes” the point F2, i.e., only
in the time interval (t1, t2), where t2 = u1t1/c1. At t > t2, interaction of the discontinuous wave (2.2) with the
depression wave (9.12) begins which is not described by self-similar solutions.

The exact solution of the dam-break problem (9.1), shown by the curve h∗G1G2F1F2x6 in Fig. 4, depends on
two dimensionless parameters: the Froude number θ behind the discontinuous-wave front F2x6 and the parameter τ

which determines the existence of the depth discontinuity h1h
∗. The results of experimental modeling studies

[21, 23] of the dam-break problem (9.1) at initial depths H0 = 3–21 cm, it follows that, at H0 = 7–21 cm, the
parameters θ and τ change only slightly and are close to the constant values θ = 6.7 and τ = 0.62. For these values
of the parameters θ and τ , the exact solution is in good agreement with the data of the laboratory experiments at
t > kt1 = kτ

√
H0/g (k = 1.3), where the vertical velocities at the dam location decay and the real flow can be

considered one-dimensional. Assuming that, in the given problem, the characteristic flow depth H coincides with
the initial headwater depth, i.e., H = H0, from formula (7.8), in view of (9.7), we obtain the following value of the
dimensionless parameter γ∗:

γ∗ = 4/(9 3
√

θ (θ − 2)) ≈ 0.05.

From Fig. 3b, it follows that for the time t = 1.47 sec ∈ (kt1, t2) (t1 ≈ 0.77 sec ⇒ kt1 ≈ 1 sec; t2 ≈ 2 sec),
the modified self-similar solution constructed in the present section provides a fairly accurate approximation of the
experimental wave profile in the tailwater, which indicates that the assumptions used in its construction are valid.
For the earlier time t = 0.41 sec < t1 (see Fig. 3a), when the unstable discontinuity [h1, h

∗] has not yet decayed
and the real flow is substantially two-dimensional, the calculation results and experimental data are in much worse
agreement.

10. Closed System of Equations for Describing Turbulent Bores. To derive the modified total-
momentum conservation law (7.2), under which the shallow water equations admit the propagation of discontinuous
waves over a dry bed, it is sufficient to specify the dependence of the turbulent viscosity (5.4) ν∗ on the vertical
velocity component w∗ only on the free surface (4.5) of the transition region (4.6.) At the same time, for a more
detailed analysis of turbulent flow in this region (turbulent bore), it is necessary to determine dependence (5.4) for
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all z∗ ∈ [0, h∗] and to specify the explicit form of the free-energy function σ∗(u∗, w∗) on the free surface (4.5). This
is easy to do by assuming that, as δ → 0,

ν∗ ≈ γ∗w∗ ∀z∗ ∈ [0, h∗], σ∗ ≈ ϑ∗w2
∗
∣∣
∣
z∗=h∗

(10.1)

(ϑ∗ = Hϑ/l2 = const). In this case, the dynamic boundary condition (4.19) becomes
(∂w∗

∂x∗
+

∂w∗
∂z∗

∂h∗

∂x∗
+ r∗

∂u∗

∂z∗
)∣∣
∣
z∗=h∗

= 0, (10.2)

where r∗ = γ∗/ϑ∗ = const. As a result, for the specified dimensionless parameters γ∗ and ϑ∗, we obtain the
closed system (4.12), (4.18), (4.20) of nonideal vortex shallow water with the following boundary conditions: the
nonpenetration condition at the bottom w∗(x∗, 0, t∗) = 0, and the kinematic condition (4.16) and dynamic condition
(10.2) on the free surface. From the first formula (10.1) it follows that this system ignores the bottom friction effect
due to the turbulent viscosity in the near-bottom boundary layer, whose thickness is considered negligible compared
to the characteristic flow depth H . This system can be used for numerical modeling of the formation and evolution
of turbulent bores.
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